Quantum trade-off coding for bosonic communication

نویسندگان

  • Mark M. Wilde
  • Patrick Hayden
  • Saikat Guha
چکیده

The trade-off capacity region of a quantum channel characterizes the optimal net rates at which a sender can communicate classical, quantum, and entangled bits to a receiver by exploiting many independent uses of the channel, along with the help of the same resources. Similarly, one can consider a trade-off capacity region when the noiseless resources are public, private, and secret key bits. In [Phys. Rev. Lett. 108, 140501 (2012)], we identified these trade-off rate regions for the pure-loss bosonic channel and proved that they are optimal provided that a long-standing minimum output entropy conjecture is true. Additionally, we showed that the performance gains of a trade-off coding strategy when compared to a time-sharing strategy can be quite significant. In the present paper, we provide detailed derivations of the results announced there, and we extend the application of these ideas to thermal-noise and amplifying bosonic channels. We also derive a “rule of thumb” for trade-off coding, which determines how to allocate photons in a coding strategy if a large mean photon number is available at the channel input. Our results on the amplifying bosonic channel also apply to the “Unruh channel” considered in the context of relativistic quantum information theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information trade-offs for optical quantum communication

Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region ...

متن کامل

Second-order coding rates for pure-loss bosonic channels

A pure-loss bosonic channel is a simple model for communication over free-space or fiberoptic links. More generally, phase-insensitive bosonic channels model other kinds of noise, such as thermalizing or amplifying processes. Recent work has established the classical capacity of all of these channels, and furthermore, it is now known that a strong converse theorem holds for the classical capaci...

متن کامل

Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication

We consider the problem of communicating quantum states by simultaneously making use of a noiseless classical channel, a noiseless quantum channel, and shared entanglement. We specifically study the version of the problem in which the sender is given knowledge of the state to be communicated. In this setting, a trade-off arises between the three resources, some portions of which have been inves...

متن کامل

The power of entangled quantum channels

All communication channels are at bottom quantum mechanical. Quantum mechanics contributes both obstacles to communication in the form of noise, and opportunities in the use of intrinsically quantum representations for information. This paper investigates the trade-off between power and communication rate for coupled quantum channels. By exploiting quantum correlations such as entanglement, cou...

متن کامل

Preserving information from the beginning to the end of time in a Robertson–Walker spacetime

Preserving information stored in a physical system subjected to noise can be modeled in a communication-theoretic paradigm, in which storage and retrieval correspond to an input encoding and output decoding, respectively. The encoding and decoding are then constructed in such a way as to protect against the action of a given noisy quantum channel. This paper considers the situation in which the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1105.0119  شماره 

صفحات  -

تاریخ انتشار 2011